BSR/ASHRAE Addendum f

to ANSI/ASHRAE Standard 135-2004

Public Review
Draft

ASHRAE® Standard

Proposed Addendum f to
Standard 135-2004, BACnet®—A
Data Communication Protocol
for Building Automation and
Control Networks

First Public Review (March 2006)
(Draft Shows Proposed Changes
to Current Standard)

This draft has been recommended for public review by
the responsible project committee. To submit a
comment on this proposed addendum, use the comment
form and instructions provided with this draft. The draft
is subject to modification until it is approved for
publication by the responsible project committee, the
ASHRAE Standards Committee, and the Board of
Directors. Then it will be submitted to the American
National Standards Institute Board of Standards Review
(BSR) for approval. Until this time, the current edition of
the standard (as modified by any published addenda on
the ASHRAE web site) remains in effect. The current
edition of any standard may be purchased from the
ASHRAE Bookstore @ http://www.ashrae.org or by
calling 404-636-8400 or 1-800-527-4723 (for orders in the
U.S. or Canada).

This standard is under continuous maintenance. To
propose a change to the current standard, use the
change submittal form available on the ASHRAE web
site @ http://www.ashrae.org.

The appearance of any technical data or editorial
material in this public review document does not
constitute endorsement, warranty, or guaranty by
ASHRAE of any product, service, process, procedure, or
design, and ASHRAE expressly disclaims such.

© February 10, 2006. This draft is covered under
ASHRAE copyright. Permission to reproduce or
redistribute all or any part of this document must be
obtained from the ASHRAE Manager of Standards, 1791
Tullie Circle, NE, Atlanta, GA 30329-2305. Phone: 404-
636-8400, Ext1125. Fax: 404-321-5478. E-mail:
standards.section@ashrae.org.

AMERICAN SOCIETY OF HEATING,
REFRIGERATING AND AIR-CONDITIONING
ENGINEERS, INC.
1791 Tullie Circle, NE · Atlanta GA 30329-2305
FOREWORD

The purpose of this addendum is to present a proposed change for public review. These modifications are the result of change proposals made pursuant to the ASHRAE continuous maintenance procedures and of deliberations within Standing Standard Project Committee 135. The proposed changes are summarized below.

In the following document, language to be added to existing clauses of ANSI/ASHRAE 135-2004 and Addenda is indicated through the use of *italics*, while deletions are indicated by *strike-through*. Where entirely new subclauses are proposed to be added, plain type is used throughout. Only this new and deleted text is open to comment as this time. All other material in this addendum is provided for context only and is not open for public review comment except as it relates to the proposed changes.
135-2004f-1. Add new Access Door object type.

Rationale
There is need for a standard BACnet object which represents the physical characteristics of an access-controlled door. This Access Door object represents all the physical door hardware that is commonly associated with a door such as a door contact, door lock, request-to-exit device, etc. Through this object the door may be commanded to be locked, unlocked or pulse-unlocked (unlocked for a specified period of time). In addition, this object may generate access control alarms for conditions such as door-open-too-long, forced-open etc.

Addendum 135-2004f-1

[Add new Clause 12.1, p. 130, and renumber subsequent clauses and tables]

12.1 Access Door Object Type

The Access Door object type is an abstract interface to a physical door whose properties represent the externally visible characteristics of an access control door. The Access Door is comprised of a collection of physical door hardware such as a door lock, door contact, Request-To-Exit device, etc., which together comprise a door for access control. The individual hardware components of the door may or may not be exposed through this object. The object and its properties are summarized in Table 12-1 and described in detail in this subclause.
Table 12-1. Properties of the Access Door Object

<table>
<thead>
<tr>
<th>Property Identifier</th>
<th>Property Datatype</th>
<th>Conformance Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object_Identifier</td>
<td>BACnetObjectIdentifier</td>
<td>R</td>
</tr>
<tr>
<td>Object_Name</td>
<td>CharacterString</td>
<td>R</td>
</tr>
<tr>
<td>Object_Type</td>
<td>BACnetObjectType</td>
<td>R</td>
</tr>
<tr>
<td>Present_Value</td>
<td>BACnetDoorValue</td>
<td>W</td>
</tr>
<tr>
<td>Description</td>
<td>CharacterString</td>
<td>O</td>
</tr>
<tr>
<td>Status_Flags</td>
<td>BACnetStatusFlags</td>
<td>R</td>
</tr>
<tr>
<td>Event_State</td>
<td>BACnetEventState</td>
<td>R</td>
</tr>
<tr>
<td>Reliability</td>
<td>BACnetReliability</td>
<td>R</td>
</tr>
<tr>
<td>Out_Of_Service</td>
<td>BOOLEAN</td>
<td>R</td>
</tr>
<tr>
<td>Priority_Array</td>
<td>BACnetPriorityArray</td>
<td>R</td>
</tr>
<tr>
<td>Relinquish_Default</td>
<td>BACnetDoorValue</td>
<td>R</td>
</tr>
<tr>
<td>Door_Status</td>
<td>BACnetDoorStatus</td>
<td>O<sup>1</sup></td>
</tr>
<tr>
<td>Lock_Status</td>
<td>BACnetLockStatus</td>
<td>O<sup>1</sup></td>
</tr>
<tr>
<td>Secured_Status</td>
<td>BACnetDoorSecuredStatus</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Door_Members</td>
<td>BACnetARRAY [N] of</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>BACnetDeviceObjectReference</td>
<td></td>
</tr>
<tr>
<td>Door_Pulse_Time</td>
<td>Unsigned</td>
<td>R</td>
</tr>
<tr>
<td>Door_Extended_Pulse_Time</td>
<td>Unsigned</td>
<td>R</td>
</tr>
<tr>
<td>Door_Unlock_Delay_Time</td>
<td>Unsigned</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Door_Open_Too_Long_Time</td>
<td>Unsigned</td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>Door_Alarm_State</td>
<td>BACnetDoorAlarmState</td>
<td>O<sup>1,2</sup></td>
</tr>
<tr>
<td>Masked_Alarm_Values</td>
<td>List of BACnetDoorAlarmState</td>
<td>O</td>
</tr>
<tr>
<td>Maintenance_Required</td>
<td>BACnetMaintenance</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Notification_Class</td>
<td>Unsigned</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Time_Delay</td>
<td>Unsigned</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Alarm_Values</td>
<td>List of BACnetDoorAlarmState</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Fault_Values</td>
<td>List of BACnetDoorAlarmState</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Event_Enable</td>
<td>BACnetEventTransitionBits</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Acked_Transitions</td>
<td>BACnetEventTransitionBits</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Notify_Type</td>
<td>BACnetNotifyType</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td>Event_Time_Stamp</td>
<td>BACnetARRAY [3] of</td>
<td>O<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>BACnetTimeStamp</td>
<td></td>
</tr>
<tr>
<td>Profile_Name</td>
<td>CharacterString</td>
<td>O<sup>2</sup></td>
</tr>
</tbody>
</table>

¹ These properties, when present, shall be writable when Out_Of_Service is TRUE.

² These properties are required if the object supports intrinsic reporting.

12.1.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within the BACnet Device that maintains it.

12.1.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be restricted to printable characters.
12.1.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object-type class. The value of this property shall be ACCESS_DOOR.

12.1.4 Present_Value (Commandable)

This property, of type BACnetDoorValue, reflects the current active command of the access door object. The Present_Value is commandable and has one of the following values:

- **LOCK**: The door is commanded to the locked state.
- **UNLOCK**: The door is commanded to the unlocked state.
- **PULSE-UNLOCK**: The door will be commanded to the unlocked state for a maximum of $Door_{Pulse\ Time}$ time, after which the value will be automatically relinquished from the priority array at the commanded priority. It is permissible for the local controller to relinquish the value from the priority array before the $Door_{Pulse\ Time}$ time has expired. The conditions when this may occur are considered a local matter.

 If a value of PULSE-UNLOCK is written at a given priority and the Present_Value is currently being commanded, at any value, at a higher priority, then the lower priority value will be relinquished immediately.

- **EXTENDED-PULSE-UNLOCK**: The door will be commanded to the unlocked state for a maximum of $Door_{Extended\ Pulse\ Time}$ time, after which the value will be automatically relinquished from the priority array at the commanded priority. It is permissible for the local controller to relinquish the value from the priority array before the $Door_{Extended\ Pulse\ Time}$ time has expired. The conditions when this may occur are considered a local matter.

 If a value of EXTENDED-PULSE-UNLOCK is written at a given priority and the Present_Value is currently being commanded, at any value, at a higher priority, then the lower priority value will be relinquished immediately.

Note that the present value represents the commanded state of the door, which does not necessarily correspond to the physical state of the door lock.

The present value of the Access Door is defined for a standard access controlled door, where the control operation is to lock or unlock. However, this does not exclude motorized devices such as sliding doors, parking gates, etc., where the operation is to open or close. In these cases, locked shall be equivalent to closed and unlocked shall be equivalent to open.

12.1.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.1.6 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of the physical door. Three of the flags are associated with the values of other properties of this object. A more detailed status could be determined by reading the properties that are linked to these flags. The relationship between individual flags is not defined by the protocol. The four flags are:
{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

Where:

IN_ALARM Logical FALSE (0) if the Event_State property has a value of NORMAL, otherwise logical TRUE (1).

FAULT Logical TRUE (1) if the Reliability property is present and does not have a value of NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN Logical TRUE (1) if the object has been overridden by some mechanism local to the BACnet Device. In this context “overridden” is taken to mean that the physical door is no longer tracking changes to the Present_Value property. Otherwise, the value is logical FALSE (0).

OUT_OF_SERVICE Logical TRUE (1) if the Out_Of_Service property has a value of TRUE, otherwise logical FALSE (0).

12.1.7 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine if this object has an active event state associated with it. The Event_State property shall indicate the event state of the object. If the object does not support intrinsic reporting, then the value of this property shall be NORMAL.

12.1.8 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value or the operation of the physical inputs or outputs that comprise this door are "reliable" as far as the BACnet Device or operator can determine and, if not, why. The Reliability property for this object may have any of the following values:

{NO_FAULT_DETECTED, MULTISTATE_FAULT, CONFIGURATION_ERROR, UNRELIABLE_OTHER}.

12.1.8.1 Conditions for Generating a TO-FAULT Event

A TO-FAULT event is generated under these conditions:

(a) the Reliability property becomes not equal to NO_FAULT_DETECTED, and
(b) the TO-FAULT flag must be enabled in the Event_Enable property.

12.1.9 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the logical door which this object represents is not in service. This means that the Present_Value property is decoupled from the physical door and will not track changes to the physical door when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the FAULT flag of the Status_Flags property shall be decoupled from the physical door when Out_Of_Service is TRUE. While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties, and if present, the Door_Status, Lock_Status and Door_Alarm_State properties, may be changed to any value as a means of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the Present_Value or Reliability properties, and if present, the Door_Status, Lock_Status and Door_Alarm_State properties, shall respond to changes made to these properties while Out_Of_Service is TRUE, as if those changes had occurred to the physical door.

12.1.10 Priority_Array

This property is a read-only array that contains prioritized commands that are in effect for this object. See Clause 19 for a description of the prioritization mechanism.
12.1.11 Relinquish Default

This property is the default value to be used for the Present_Value property when all command priority values in the Priority_Array property have a NULL value. See Clause 19. The acceptable values for this property are either LOCK or UNLOCK and the property shall not take on either of the values PULSE-UNLOCK or EXTENDED-PULSE-UNLOCK.

12.1.12 Door Status

This optional property, of type BACnetDoorStatus, represents the open or closed state of the physical door. The values that may be taken on by this property are:

- CLOSED The door is closed.
- OPENED The door is open or partially open.
- UNKNOWN It is unknown whether the door is opened or closed.

This property, if present, is required to be writable when Out_Of_Service is TRUE.

12.1.13 Lock Status

This optional property, of type BACnetLockStatus, represents the commanded state of the door lock. The values that may be taken on by this property are:

- LOCKED The door lock is locked.
- UNLOCKED The door lock is unlocked.
- PENDING_LOCK The Present_Value has a value of LOCK but the door lock is unlocked.
- PENDING_UNLOCK The Present_Value has a value of UNLOCK but the door lock is locked.
- UNKNOWN It is unknown whether the door lock is locked or unlocked.

This property, if present, is required to be writable when Out_Of_Service is TRUE.

12.1.14 Secured Status

This optional property, of type BACnetDoorSecuredStatus, represents whether or not the physical door is in a secured state. This property shall have a value of SECURE if, and only if, all of the following conditions are met:

- the IN_ALARM flag of the Status_Flags property is FALSE, and
- the Masked_Alarm_Values list, if it exists, is empty, and
- the Door_Status property has a value of CLOSED, and
- the Lock_Status property has a value of LOCKED.

12.1.15 Door Members

This optional property, of type BACnet ARRAY[N] of BACnetDeviceObjectReference, holds a array of references to BACnet objects which represent I/O devices, authentication devices, schedules, programs, or other objects that are associated with the physical door. It is a local matter as to how this array is used and which objects are referenced in this array. The array may be empty or not present if the vendor does not wish to expose the individual objects that make up this physical door.
12.1.16 Door_Pulse_Time

This property, of type Unsigned, is the maximum duration of time, in tenths of seconds, for which the door will be unlocked when the Present_Value has a value of PULSE-UNLOCK, after which time the Present_Value shall be automatically relinquished at the priority that established the PULSE_UNLOCK command.

12.1.17 Door_Extended_Pulse_Time

This property, of type Unsigned, is the maximum amount of time, in tenths of seconds, which the door will be unlocked when the Present_Value has a value of EXTENDED_PULSE_UNLOCK, after which time the Present_Value shall be automatically relinquished at the priority that established the EXTENDED_PULSE_UNLOCK command.

12.1.18 Door_Unlock_Delay_Time

This optional property, of type Unsigned, is the duration of time, in tenths of seconds, which the physical door lock will delay unlocking when the Present_Value changes to a value of PULSE_UNLOCK or EXTENDED_PULSE_UNLOCK.

12.1.19 Door_Open_Too_Long_Time

This property, of type Unsigned, is the time, in tenths of seconds, to delay before setting the Door_Alarm_State to Door_Open_Too_Long after it is determined that a door-open-too-long condition exists. A Door-Open-Too-Long condition occurs when the Present_Value has a value of LOCK and one of the following conditions exists:

(a) The Present_Value had a previous value of PULSE-UNLOCK and the door has been in a continual open state for Door_Open_Too_Long_Time tenths of seconds after the Door_Pulse_Time has expired.
(b) The Present_Value had a previous value of EXTENDED-PULSE-UNLOCK and the door has been in a continual open state for Door_Open_Too_Long_Time tenths of seconds after the Door_Extended_Pulse_Time has expired.
(c) The Present_Value had a previous value of UNLOCK and the door has been in a continual open state for Door_Open_Too_Long_Time tenths of seconds.

12.1.20 Door_Alarm_State

This optional property, of type BACnetDoorAlarmState, is the alarm state for the physical door. The CHANGE_OF_STATE event algorithm will monitor this property. When no alarm or fault condition exists for this object this property shall take on the value NORMAL. It is considered a local matter as to when this property is set to a non-normal value. It is up to the internal control logic to take Lock_Status, Door_Status, Present_Value and information from other objects into account when calculating the proper alarm state. However, this property cannot take on any value which is also in the Masked_Alarm_Values list. If the property is currently set to a specific state and that state is written to the Masked_Alarm_Values list then the Door_Alarm_State will immediately return to the NORMAL state.

This property is required if intrinsic reporting is supported by this object, and if present, required to be writable when Out_Of_Service is TRUE.

12.1.21 Masked_Alarm_Values

This optional property, of type List of BACnetDoorAlarmState, shall specify any alarm and/or fault states that are masked. An alarm state which is currently masked will prevent the Door_Alarm_State property from being equal to that state.

12.1.22 Maintenance_Required

This optional property, of type BACnetMaintenance, shall indicate the type of maintenance required for the Access Door. This may be periodic maintenance or a "parameter-determined" maintenance, such as maximum duty-cycle for a door lock, and shall be determined locally.
12.1.23 Notification_Class

This optional property, of type Unsigned, shall specify the notification class to be used when handling and generating event notifications for this object. The Notification_Class property implicitly refers to a Notification Class object that has a Notification_Class property with the same value. This property is required if intrinsic reporting is supported by this object.

12.1.24 Time_Delay

This optional property, of type Unsigned, shall either specify the minimum period of time in seconds that the Door_Alarm_State must remain equal to any one of the values in the Alarm_Values property before a TO-OFFNORMAL event is generated or remain not equal to any of the values in the Alarm_Values property before a TO-NORMAL event is generated. This property is required if intrinsic reporting is supported by this object.

12.1.25 Alarm_Values

This optional property, of type List of BACnetDoorAlarmState, shall specify any states the Door_Alarm_State must equal before a TO-OFFNORMAL event is generated and event state OFFNORMAL is entered. This property is required if intrinsic reporting is supported by this object.

12.1.25.1 Conditions for Generating a TO-OFFNORMAL Event

A TO-OFFNORMAL event is generated under these conditions:

(a) the TO-OFFNORMAL flag must be enabled in the Event_Enable property, and
(b) the Door_Alarm_State must equal any of the values in the Alarm_Values list, and
(c) the Door_Alarm_State must remain within the Alarm_Values list for a minimum period of time specified by the Time_Delay property.

12.1.25.2 Conditions for Generating a TO-NORMAL Event

Once equal, the Door_Alarm_State must become not equal to any of the states in the Alarm_Values property, and not equal to any of the states in the Fault_Values property, before a TO-NORMAL event is generated under these conditions:

(a) the TO-NORMAL flag must be enabled in the Event_Enable property, and
(b) the Door_Alarm_State must remain not equal to any of the states in the Alarm_Values property, and
(c) the Door_Alarm_State must remain not equal to any of the states in the Fault_Values property.

12.1.26 Fault_Values

This optional property, of type List of BACnetDoorAlarmState, shall specify any states the Door_Alarm_State must equal before a TO-FAULT event is generated. If Door_Alarm_State becomes equal to any of the states in the Fault_Values list and no physical fault has been detected, then the Reliability property shall have the value MULTI_STATE_FAULT. This property is required if intrinsic reporting is supported by this object.

12.1.26.1 Conditions for Generating a TO-FAULT Event

A TO-FAULT event is generated under these conditions:

(a) the TO-FAULT flag must be enabled in the Event_Enable property, and
(b) the Door_Alarm_State must equal any of the values in the Fault_Values property.
12.1.26.2 Conditions for Generating a TO-NORMAL Event

Conditions for generating a TO-NORMAL event are defined in 12.1.24.2.

12.1.27 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable reporting of TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. This property is required if intrinsic reporting is supported by this object.

12.1.28 Acked_Transitions

This optional property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the receipt of acknowledgments for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. These flags shall be cleared upon the occurrence of the corresponding event and set under any of these conditions:

(a) upon receipt of the corresponding acknowledgment;
(b) upon the occurrence of the event if the corresponding flag is not set in the Event_Enable property (meaning that event notifications will not be generated for this condition and thus no acknowledgment is expected);
(c) upon the occurrence of the event if the corresponding flag is set in the Event_Enable property and the corresponding flag in the Ack_Required property of the Notification Class object implicitly referenced by the Notification_Class property of this object is not set (meaning that no acknowledgment is expected).

This property is required if intrinsic reporting is supported by this object.

12.1.29 Notify_Type

This optional property, of type BACnetNotifyType, shall convey whether the notifications generated by the object should be Events or Alarms. This property is required if intrinsic reporting is supported by this object.

12.1.30 Event_Timestamps

This optional property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last event notifications for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively. Time stamps of type Time or Date shall have ‘FF’ in each octet and Sequence number time stamps shall have the value 0 if no event notification of that type has been generated since the object was created. This property is required if intrinsic reporting is supported by this object.

12.1.31 Profile_Name

This optional property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness, a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here. This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope of this standard.
[Change Table 13.1, p. 254, as shown below]

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Criteria</th>
<th>Properties Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Door</td>
<td>If Present_Value changes at all or Status_Flags changes at all or Door_Alarm_State changes at all (if the object has a Door_Alarm_State property)</td>
<td>Present_Value, Status_Flags, Door_Alarm_State (if the object has a Door_Alarm_State property)</td>
</tr>
<tr>
<td>Analog Input, Analog Output, Analog Value</td>
<td>If Present_Value changes by COV_Increment or Status_Flags changes at all</td>
<td>Present_Value, Status_Flags</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Change Table 13.2, p. 256, as shown below]

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Criteria</th>
<th>Event Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Door</td>
<td>If Door_Alarm_State changes to a new state for longer than Time_Delay AND the new transition is enabled in Event_Enable</td>
<td>CHANGE_OF_STATE</td>
</tr>
<tr>
<td>Binary Input, Binary Value, Multi-state Input, Multi-state Value</td>
<td>If Present_Value changes to a new state for longer than Time_Delay AND the new transition is enabled in Event_Enable</td>
<td>CHANGE_OF_STATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Change Table 13.3, p. 257, as shown below]

<table>
<thead>
<tr>
<th>Object</th>
<th>Event Type</th>
<th>Notification Parameters</th>
<th>Referenced Object's Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Door</td>
<td>CHANGE_OF_STATE</td>
<td>New_State, Status_Flags</td>
<td>Door_Alarm_State</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Status_Flags</td>
</tr>
<tr>
<td>Binary Input, Binary Value, Multi-state Input, Multi-state Value</td>
<td>CHANGE_OF_STATE</td>
<td>New_State, Status_Flags</td>
<td>Present_Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Status_Flags</td>
</tr>
</tbody>
</table>
[Change Clause 19.2.1.1, “Commandable Properties”, p. 256-257, as shown below]

The prioritization scheme is applied to certain properties of objects. The standard commandable properties and objects are as follows:

<table>
<thead>
<tr>
<th>OBJECT</th>
<th>COMMANDABLE PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Output</td>
<td>Present_Value</td>
</tr>
<tr>
<td>Binary Output</td>
<td>Present_Value</td>
</tr>
<tr>
<td>Multi-state Output</td>
<td>Present_Value</td>
</tr>
<tr>
<td>Multi-state Value</td>
<td>Present_Value</td>
</tr>
<tr>
<td>Analog Value</td>
<td>Present_Value</td>
</tr>
<tr>
<td>Binary Value</td>
<td>Present_Value</td>
</tr>
<tr>
<td>Access Door</td>
<td>Present_Value</td>
</tr>
</tbody>
</table>

The designated property of these objects is commandable (prioritized) by definition. Individual vendors, however, may decide to apply prioritization to any of the vendor-specified properties. These additional commandable properties shall have associated Priority_Array and Relinquish_Default properties with appropriate names. See 23.3.

[Add to Clause 21, p 390, and place into appropriate alphabetical positions]

BACnetDoorValue ::= ENUMERATED {
 lock (0),
 unlock (1),
 pulse-unlock (2),
 extended-pulse-unlock (3),
}

BACnetLockStatus ::= ENUMERATED {
 locked (0),
 unlocked (1),
 pending-unlock (2),
 pending-lock (3),
 unknown (4),
}

BACnetDoorSecuredStatus ::= ENUMERATED {
 secured (0),
 unsecured (1),
 unknown (2),
}

BACnetDoorStatus ::= ENUMERATED {
 closed (0),
 opened (1),
 unknown (2),
}
BACnetDoorAlarmState ::= ENUMERATED {
 normal (0),
 alarm (1),
 door-open-too-long (2),
 forced-open (3),
 tamper (4),
 door-fault (5),
 lock-down (6),
 free-access (7),
 egress-open (8)
}

-- Enumerated values 0-255 are reserved for definition by ASHRAE. Enumerated values
-- 256-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23.

[Change Clause 21, p. 421]

BACnetObjectType ::= ENUMERATED {
 access-door (30),
 accumulator (23),
 analog-input (0),
 analog-output (1),
 analog-value (2),
 ...
 -- see access-door (30),
}

BACnetObjectTypesSupported ::= BIT STRING {
 -- access-door (30),
 -- accumulator (23),
 analog-input (0),
 ...
 -- trend-log (20),
 -- Objects added after 1995
 averaging (18),
 multi-state-value (19),
 trend-log (20),
 life-safety-point (21),
 life-safety-zone (22),
 -- Objects added after 2001
 accumulator (23),
 pulse-converter (24),
 -- Objects added after 2004
 access-door (30)
}

...
BACnetPropertyIdentifier ::= ENUMERATED {

<table>
<thead>
<tr>
<th>Property Identifier</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct-reading</td>
<td>(156)</td>
</tr>
<tr>
<td>door-alarm-state</td>
<td>(212)</td>
</tr>
<tr>
<td>door-extended-pulse-time</td>
<td>(213)</td>
</tr>
<tr>
<td>door-members</td>
<td>(214)</td>
</tr>
<tr>
<td>door-open-too-long-time</td>
<td>(215)</td>
</tr>
<tr>
<td>door-pulse-time</td>
<td>(216)</td>
</tr>
<tr>
<td>door-unlock-delay-time</td>
<td>(217)</td>
</tr>
<tr>
<td>door-status</td>
<td>(218)</td>
</tr>
<tr>
<td>effective-period</td>
<td>(32)</td>
</tr>
<tr>
<td>location</td>
<td>(58)</td>
</tr>
<tr>
<td>lock-status</td>
<td>(219)</td>
</tr>
<tr>
<td>log-buffer</td>
<td>(131)</td>
</tr>
<tr>
<td>manual-slave-address-binding</td>
<td>(170)</td>
</tr>
<tr>
<td>masked-alarm-values</td>
<td>(220)</td>
</tr>
<tr>
<td>maximum-output</td>
<td>(61)</td>
</tr>
<tr>
<td>schedule-default</td>
<td>(174)</td>
</tr>
<tr>
<td>secured-status</td>
<td>(221)</td>
</tr>
<tr>
<td>segmentation-supported</td>
<td>(107)</td>
</tr>
</tbody>
</table>

-- see value-change-time (192),
-- see door-alarm-state (212),
-- see door-extended-pulse-time (213),
-- see door-members (214),
-- see door-open-too-long-time (215),
-- see door-pulse-time (216),
-- see door-unlock-delay-time (217),
-- see door-status (218),
-- see lock-status (219),
-- see masked-alarm-values (220),
-- see secured-status (221),

...

-- The special property identifiers all, optional, and required are reserved for use in the ReadPropertyConditional and ReadPropertyMultiple services or services not defined in this standard.

-- Enumerated values 0-511 are reserved for definition by ASHRAE. Enumerated values 512-4194303 may be used by others subject to the procedures and constraints described in Clause 23. The highest enumeration used in this version is 192221.

...
BACnetPropertyStates ::= CHOICE {
 boolean-value [0] BOOLEAN,
 binary-value [1] BACnetBinaryPV,
 event-type [2] BACnetEventType,
 polarity [3] BACnetPolarity,
 program-change [4] BACnetProgramRequest,
 program-state [5] BACnetProgramState,
 reason-for-halt [6] BACnetProgramError,
 reliability [7] BACnetReliability,
 state [8] BACnetEventState,
 system-status [9] BACnetDeviceStatus,
 units [10] BACnetEngineeringUnits,
 unsigned-value [11] Unsigned,
 life-safety-mode [12] BACnetLifeSafetyMode,
}

[Change Table 23.1, p. 437, as shown below]

<table>
<thead>
<tr>
<th>Enumeration Name</th>
<th>Reserved Range</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>BACnetDeviceStatus</td>
<td>0-63</td>
<td>65535</td>
</tr>
<tr>
<td>BACnetDoorAlarmState</td>
<td>0-255</td>
<td>65535</td>
</tr>
<tr>
<td>BACnetEngineeringUnits</td>
<td>0-255</td>
<td>65535</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
[Add to Annex C, p. 453]

ACCESS-DOOR: \(=\) SEQUENCE {
 object-identifier \[75\] BACnetObjectIdentifier,
 object-name \[77\] CharacterString,
 object-type \[79\] BACnetObjectType,
 present-value \[85\] BACnetDoorValue,
 description \[28\] CharacterString OPTIONAL,
 status-flags \[111\] BACnetStatusFlags,
 event-state \[36\] BACnetEventState,
 reliability \[103\] BACnetReliability,
 out-of-service \[81\] BOOLEAN,
 priority-array \[87\] BACnetPriorityArray,
 relinquish-default \[104\] BACnetDoorValue,
 door-status \[218\] BACnetDoorStatus,
 lock-status \[219\] BACnetDoorSecuredStatus,
 door-members \[214\] SEQUENCE OF BACnetDeviceObjectReference OPTIONAL,
 door-pulse-time \[216\] Unsigned,
 door-extended-pulse-time \[213\] Unsigned OPTIONAL,
 door-unlock-delay-time \[217\] Unsigned OPTIONAL,
 door-open-too-long-time \[215\] Unsigned,
 door-alarm-state \[212\] BACnetDoorAlarmState OPTIONAL,
 masked-alarm-values \[220\] SEQUENCE OF BACnetDoorAlarmState OPTIONAL,
 secured-status \[221\] BACnetDoorSecuredStatus OPTIONAL,
 maintenance-required \[158\] BOOLEAN OPTIONAL,
 notification-class \[17\] Unsigned OPTIONAL,
 time-delay \[113\] Unsigned OPTIONAL,
 alarm-values \[7\] SEQUENCE OF BACnetDoorAlarmState OPTIONAL,
 fault-values \[39\] SEQUENCE OF BACnetDoorAlarmState OPTIONAL,
 event-enable \[35\] BACnetEventTransitionBits OPTIONAL,
 acked-transitions \[9\] BACnetEventTransitionBits OPTIONAL,
 notify-type \[72\] BACnetNotifyType OPTIONAL,
 event-time-stamps \[130\] SEQUENCE OF BACnetTimeStamp OPTIONAL,
 profile-name \[168\] CharacterString OPTIONAL
}

[Add to Annex D, p. 465, and renumber subsequent clauses]

D.1 Example of an Access Door object

This example of an access door represents the main entrance doors to an office building. The door is scheduled for UNLOCK at priority 10 but this has been overridden with a LOCK by the manual operator at priority 8. The door is currently locked but is opened which has resulted in a FORCED-OPEN alarm condition. The DOOR-OPEN-TOO-LONG alarm is temporarily masked and will not generate this type of alarm regardless of how long the door is held open.

Property: object-identifier = (Access Door, Instance 1)
Property: object-name = “Main Entrance”
Property: object-type = ACCESS DOOR
Property: present-value = LOCK
Property: description = “Main entrance south building”
Property: status-flags = (TRUE, FALSE, TRUE, FALSE)
Property: event-state = OFFNORMAL
Property: reliability = NO_FAULT_detected
Property: out-of-service = FALSE
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority-array</td>
<td>{NULL, NULL, NULL, NULL, NULL, NULL, LOCK, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL}</td>
</tr>
<tr>
<td>relinquish-default</td>
<td>LOCK</td>
</tr>
<tr>
<td>door-status</td>
<td>OPEN</td>
</tr>
<tr>
<td>lock-status</td>
<td>LOCKED</td>
</tr>
<tr>
<td>secured-status</td>
<td>UNSECURED</td>
</tr>
<tr>
<td>door-members</td>
<td></td>
</tr>
<tr>
<td>door-pulse-time</td>
<td>60</td>
</tr>
<tr>
<td>door-open-too-long-time</td>
<td>300</td>
</tr>
<tr>
<td>door-alarm-state</td>
<td>FORCED_OPEN</td>
</tr>
<tr>
<td>masked-alarm-values</td>
<td>{DOOR-OPEN-TOO-LONG}</td>
</tr>
<tr>
<td>maintenance-required</td>
<td>NONE</td>
</tr>
<tr>
<td>notification-class</td>
<td>1</td>
</tr>
<tr>
<td>time-delay</td>
<td>0</td>
</tr>
<tr>
<td>alarm-values</td>
<td>{DOOR-OPEN-TOO-LONG, FORCED-OPEN, TAMPER}</td>
</tr>
<tr>
<td>fault-values</td>
<td>{DOOR-FAULT}</td>
</tr>
<tr>
<td>event-enable</td>
<td>{TRUE, FALSE, TRUE}</td>
</tr>
<tr>
<td>acked_transitions</td>
<td>{FALSE, TRUE, TRUE}</td>
</tr>
<tr>
<td>notify-type</td>
<td>ALARM</td>
</tr>
<tr>
<td>event-time-stamps</td>
<td></td>
</tr>
</tbody>
</table>