ANSI/ASHRAE Addendum ca to
ANSI/ASHRAE Standard 135-2020

A Data Communication Protocol for
Building Automation and Control Networks

This addendum was approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. Instructions for how to submit a change can be found on the ASHRAE® website (https://www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 180 Technology Parkway NW, Peachtree Corners, GA 30092. E-mail: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2022 ASHRAE ISSN 1041-2336
SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus Standard developed under the auspices of ASHRAE. Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this Standard as an ANS, as “substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.” Compliance with this Standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review. ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Senior Manager of Standards of ASHRAE should be contacted for:
- interpretation of the contents of this Standard,
- participation in the next review of the Standard,
- offering constructive criticism for improving the Standard, or
- permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.
[This foreword and the “rationales” on the following pages are not part of this standard. They are merely informative and do not contain requirements necessary for conformance to the standard.]

FOREWORD

The purpose of this addendum is to present a proposed change for public review. These modifications are the result of change proposals made pursuant to the ASHRAE continuous maintenance procedures and of deliberations within Standing Standard Project Committee 135. The proposed changes are summarized below.

135-2020ca-1. Introduce the Concept of Color for BACnet, p. 3
135-2020ca-2. Add new Color object type, p. 4
135-2020ca-3. Add new Color Temperature object type, p. 11
135-2020ca-4. Add color-reference properties to LO and BLO object types, p. 19
135-2020ca-5. Add high/low trim to LO object type, p. 23
135-2020ca-6. Aggregated changes to Clause 21 and 25, p. 26
135-2020ca-7. BIBB Changes to Support Additional Object Types, p. 29

In the following document, language to be added to existing clauses of ANSI/ASHRAE 135-2020 and Addenda is indicated through the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added, plain type is used throughout. Only this new and deleted text is open to comment at this time. All other material in this document is provided for context only and is not open for public review comment except as it relates to the proposed changes.

The use of placeholders like X, Y, Z, X1, X2, N, NN, x, n, ?, etc., should not be interpreted as literal values of the final published version. These placeholders will be assigned actual numbers/letters only after final publication approval of the addendum.
135-2020ca-1. Introduce the Concept of Color for BACnet

[The following introduction is informative and provided as background information and rationale for this addendum. It will not be part of the standard.]

INTRODUCTION

The BACnet Lighting Output (LO) and Binary Lighting Output (BLO) objects provide support for lighting applications and a standardized object model for white light endpoints that perform lighting control. In representing lighting applications with these object types, the central idea is the control of luminance on a normalized scale from off to some maximum lighting level. These objects do not address the concept of color in their object models. There are architectural and even commercial lighting applications, where color is a useful and important concept. There are other applications where it would be advantageous to model color, and changing color, as a characteristic not even necessarily coupled to lighting.

It is increasingly common to incorporate color control into lighting applications. However, most lighting applications separate the concept of luminance from the concept of color itself. There are several different color models in widespread use. These proposals focus on the use of the CIE 15: 2004 Chromaticity Diagram that models color as an x-y space and specific colors are (x,y) coordinates within this space. Color endpoints such as lighting controller outputs or luminaires are thus represented in BACnet as a pair of objects such as an LO and a Color object. The LO controls the luminance while the Color controls the x-y color.

The proposed Color object incorporates ideas from the lighting output objects in terms of fading, ramping and stepping. There is a significant difference between the concept in the lighting objects where Present_Value is commandable, and the Color object where Present_Value is not commandable. This difference is intentional and represents the different way that color lighting is commonly controlled vs. simple luminance in white light applications. In white light applications it is common to have more than one source of control, for example scheduled lighting level changes and changes initiated by a local controller device (dimmer or switch). The prioritization scheme that BACnet uses is directly applicable to this kind of application. However, in color lighting applications there is typically only one source for the desired color. Because of this, there is no use case where arbitration is required between multiple color control clients and a color endpoint.

There is a notable exception. In some color applications such as vivaria, it is desirable to control color over a long period of time, for example fading between specific colors over many hours. The scenario when a second “color” might be needed would be for example an emergency or maintenance situation when the normal long-term color fade must be temporarily interrupted perhaps with pure white light until the emergency is dealt with. At the end of the emergency the normal color control can take over and restore the color to where it would have been if it was not interrupted. The point is that there are only ever two sources for color information: normal operation and emergency operation. As a result, color does not require the complexity of commandability when a much simpler mechanism can provide a solution to the only use cases we have identified.

There is also the concept of color temperature. In some cases the “color” that is to be controlled is actually the white light color temperature, which is a specific region of the x-y color space called the white light curve. Color temperature applications are distinctly different from full color applications, sufficiently so that a separate Color Temperature object is also proposed.
135-2020ca-2. Add new Color object type

Rationale

The 135-2020 Lighting Output and Binary Lighting Output objects do not address the concept of color in their object models. There are architectural and even commercial lighting applications, where color is a useful and important concept. There are other applications where it would be advantageous to model color, and changing color, as a characteristic not even necessarily coupled to lighting.

These changes extend the BACnet object model to accommodate color.

[Change 3.2]

fading: the gradual increase or decrease of the actual output luminance from one setting to another over a fixed period of time, or the change of color or color temperature from one color to another over a fixed period of time, or a change of both luminance level and color.

xyColor: The numeric representation of a color in terms of its (x,y) coordinates in the CIE chromaticity diagram, independent of its luminance.

[Change Table 12-63]

<table>
<thead>
<tr>
<th>Datatype in Present_Value write</th>
<th>Datatype of referenced property</th>
</tr>
</thead>
</table>
| BOOLEAN | NC NCNC

NC=No Coercion ID=Invalid Datatype
[Add 12.X, Color Object Type]

12.X Color Object Type

The Color object type defines a standardized object whose properties represent the externally visible characteristics of a color. This color may be used to affect the visible color produced by any device, typically, but not limited to, lighting outputs. The Color object includes dedicated functionality specific to color control that would otherwise require explicit programming. The color itself is analog in nature and shall be referred to as “color output.” The color may be used by the device in various applications, for example to represent the color of light produced by a lighting device. There is an implicit connection in such cases between the object that controls luminance, e.g. a Lighting Output or Binary Lighting Output, and a Color object that controls its color. This connection is BACnet-visible in the Color_Reference and Override_Color_Reference properties of those objects. See 12.54.X, 12.54.Z, 12.55.X and 12.55.Z.

The color can be changed directly to an absolute color by writing to the Present_Value of the Color object. The color may also be changed by writing to the Color_Command property. The color command provides additional color control functionality with specific functions such as fading.

The Color object supports a single color-model called xyColor. In the xyColor model, the parameters are the x and y coordinates of the color on the CIE chromaticity diagram (CIE 15: 2004), expressed as a pair of numbers each in the range 0 to 1. Writes of BACnet xyColor values that are outside the range 0 to 1 shall be considered “values out of range.” Values within the range 0 to 1 but not within the curved space of the CIE chromaticity diagram, or xy values not supported by the device, may be considered “values out-of-range” or choose the closest color supported, the choice being a local matter. The algorithm used to determine the closest color shall be a local matter. When fading from one color to another the algorithm used to determine the intermediate colors shall be a local matter.

Figure 12-X: CIE Chromaticity Diagram
The object and its properties are summarized in Table 12-X and described in detail in this subclause.

Table 12-X. Properties of the Color Object

<table>
<thead>
<tr>
<th>Property Identifier</th>
<th>Property Datatype</th>
<th>Conformance Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object_Identifier</td>
<td>BACnetObjectIdentifier</td>
<td>R</td>
</tr>
<tr>
<td>Object_Name</td>
<td>CharacterString</td>
<td>R</td>
</tr>
<tr>
<td>Object_Type</td>
<td>BACnetObjectType</td>
<td>R</td>
</tr>
<tr>
<td>Present_Value</td>
<td>BACnetxyColor</td>
<td>W</td>
</tr>
<tr>
<td>Tracking_Value</td>
<td>BACnetxyColor</td>
<td>R</td>
</tr>
<tr>
<td>Color_Command</td>
<td>BACnetColorCommand</td>
<td>W</td>
</tr>
<tr>
<td>In_Progress</td>
<td>BACnetColorOperationInProgress</td>
<td>R</td>
</tr>
<tr>
<td>Default_Color</td>
<td>BACnetxyColor</td>
<td>R</td>
</tr>
<tr>
<td>Description</td>
<td>CharacterString</td>
<td>O</td>
</tr>
<tr>
<td>Default_Fade_Time</td>
<td>Unsigned</td>
<td>R</td>
</tr>
<tr>
<td>Transition</td>
<td>BACnetColorTransition</td>
<td>O</td>
</tr>
<tr>
<td>Value_Source</td>
<td>BACnetValueSource</td>
<td>O(^1,2,3)</td>
</tr>
<tr>
<td>Audit_Level</td>
<td>BACnetAuditLevel</td>
<td>O(^4)</td>
</tr>
<tr>
<td>Auditable_Operations</td>
<td>BACnetAuditOperationFlags</td>
<td>O(^4)</td>
</tr>
<tr>
<td>Tags</td>
<td>BACnetARRAY[N] of BACnetNameValue</td>
<td>O</td>
</tr>
<tr>
<td>Property_List</td>
<td>BACnetARRAY[N] of BACnetPropertyIdentifier</td>
<td>O</td>
</tr>
<tr>
<td>Profile_Location</td>
<td>CharacterString</td>
<td>O</td>
</tr>
<tr>
<td>Profile_Name</td>
<td>CharacterString</td>
<td>O</td>
</tr>
</tbody>
</table>

\(^1\) This property is required if the object supports the value source mechanism.

\(^2\) This property shall be present only if the object supports the value source mechanism.

\(^3\) This property shall be writable as described in Clause 19.5.

\(^4\) This property shall be present only if the device supports audit reporting.

12.X.1 Object_Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within the BACnet Device that maintains it.

12.X.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be restricted to printable characters.

12.X.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property shall be COLOR.

12.X.4 Present_Value

This property, of type BACnetxyColor, shall indicate the target color value for the color output. The range of values for x and y shall be 0.0 to 1.0.

Present_Value may also be affected by writes to the Color_Command property that initiate color control commands. These commands may asynchronously affect the color output by establishing a new target for Present_Value and carrying out the requested operation. Transitioning from one color to another is supported by writing a FADE_TO_COLOR command to the property Color_Command. The current color is always indicated in the Tracking_Value property. If a color command is currently in progress and the Present_Value is written, the color command shall be halted (see Clause 12.X.6.1 Halting a Color Command in Progress).
The color output shall be updated whenever the Present_Value is written or changed as a result of executing a color command. However, when the device starts up or is reset, it is a local matter as to whether the color output is updated with the current value of Present_Value or whether the value of the color output before startup or reset is retained (see 12.X.8). When the color output is not updated at startup or reset, the property In_Progress shall be set to NOT_CONTROLLED until the color output is updated with the current value of Present_Value. Writes to Present_Value outside of the valid range of values shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.

12.X.5 Tracking_Value

This property, of type BACnetxyColor, indicates the components of the object’s actual color output. If the Color_Command is written with a color operation that affects color, causing Present_Value to be changed over time, or Present_Value is written to directly, then Tracking_Value shall indicate the calculated color for the color output from moment to moment while the fade is in progress.

When the value of In_Progress is IDLE, Tracking_Value shall be equal to Present_Value.

When the value of In_Progress is FADE_ACTIVE, Tracking_Value shall indicate the current calculated value of the fade algorithm. The manner by which the Tracking_Value is calculated in this situation shall be a local matter.

When the value of In_Progress is NOT_CONTROLLED or OTHER, the value of Tracking_Value shall be a local matter.

12.X.6 Color_Command

This property, of type BACnetColorCommand, is used to request specific behaviors. Color_Command is written with compound values that specify particular color operations. Devices containing Color objects shall support all BACnetColorOperations shown in Table 12-X2. If Color_Command 'operation' is written with an enumeration value not shown in Table 12-X2 a Result(-) shall be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE. BACnetColorOperations may include three optional fields. The 'target-color' field, of type BACnetxyColor, represents the target color for FADE_TO_COLOR operations in Color objects. The 'fade-time' field is an optional amount of time during which a fade-to-color operation occurs.

The color commands are described in Table 12-X2. The notation to specify the syntax of the color commands is as follows:

- `<field in angle brackets>` required field of the BACnetColorCommand
- `<field in angle brackets = value>` required field of the BACnetColorCommand with a specified value
- `[fields in square brackets]` optional fields of the BACnetColorCommand.
Table 12-X2. Color Commands Applicable to Color Objects

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>This operation is used to indicate that no color command has been written to</td>
</tr>
<tr>
<td></td>
<td>the Color_Command property. Attempts to write this operation to the Color_Command</td>
</tr>
<tr>
<td></td>
<td>property shall cause a Result(-) to be returned with an Error Class of PROPERTY</td>
</tr>
<tr>
<td></td>
<td>and an Error Code of VALUE_OUT_OF_RANGE.</td>
</tr>
<tr>
<td>FADE_TO_CCT</td>
<td>These operations shall not be written to the Color_Command property. Attempts</td>
</tr>
<tr>
<td>RAMP_TO_CCT</td>
<td>to write these operations to the Color_Command property shall cause a Result(-)</td>
</tr>
<tr>
<td>STEP_UP_CCT</td>
<td>to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.</td>
</tr>
<tr>
<td>STEP_DOWN_CCT</td>
<td>Commands Present_Value to fade from the current Tracking_Value to the target-</td>
</tr>
<tr>
<td></td>
<td>color specified in the command. The fade operation changes the color output from</td>
</tr>
<tr>
<td></td>
<td>its current value to target-color, over a period of time defined by fade-time. While</td>
</tr>
<tr>
<td></td>
<td>the fade operation is executing, In_Progress shall be set to FADE_ACTIVE, and Tracking_Value shall be updated to reflect the current progress of the fade.</td>
</tr>
<tr>
<td>Syntax:</td>
<td><operation = FADE_TO_COLOR> <target-color> [fade-time]</td>
</tr>
<tr>
<td>STOP</td>
<td>Stops any FADE_TO_COLOR command in progress and sets In_Progress to IDLE.</td>
</tr>
<tr>
<td></td>
<td>If there is no fade command currently executing then this operation is ignored.</td>
</tr>
<tr>
<td>Syntax:</td>
<td><operation = STOP></td>
</tr>
</tbody>
</table>

12.X.6.1 Halting a Color Command in Progress

Some color commands (e.g. FADE_TO_COLOR) are executed over a period of time. While a color command is in progress, it shall be halted under the following conditions:

(k) A STOP or FADE_TO_COLOR, is written to the Color_Command property, or
(l) The Present_Value is written.

When a FADE_TO_COLOR command that is currently in progress is halted, the internal fade algorithm is halted.

12.X.7 In_Progress

This property, of type BACnetColorOperationInProgress, shall indicate that there may be processes in the color object that may cause the Tracking_Value and Present_Value to differ temporarily. The processes indicated in the property are summarized in Table 12-X3.

Table 12-X3. BACnetColorOperationInProgress Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE</td>
<td>The default value that indicates that no processes are executing which would</td>
</tr>
<tr>
<td></td>
<td>cause the Present_Value and Tracking_Value to differ.</td>
</tr>
<tr>
<td>FADE_ACTIVE</td>
<td>Indicates that a fade color command is currently being executed.</td>
</tr>
<tr>
<td>NOT_CONTROLLED</td>
<td>Indicates that on startup or reset the color output has not been updated with</td>
</tr>
<tr>
<td></td>
<td>the current value of Present_Value.</td>
</tr>
<tr>
<td>OTHER</td>
<td>Indicates that the Tracking_Value and Present_Value may differ but none of</td>
</tr>
<tr>
<td></td>
<td>the other conditions describe the nature of the process.</td>
</tr>
</tbody>
</table>

12.X.8 Default_Color

This property, of type BACnetxyColor, shall indicate the color to be used for the color output when the device is restarted until such time as Present_Value or Color_Command are written. As a special case, the BACnetxyColor value (0,0) for Default_Color shall be interpreted to mean “restore to previous color that was in effect prior to restart.” The Color object is not required to retain the moment-to-moment color value in non-volatile memory. However, if the implementation supports this feature then Default_Color of (0,0) shall use this retained color instead of a specific default color.
12.X.9 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.X.10 Default_Fade_Time

This property, of type Unsigned, indicates the amount of time in milliseconds over which changes to the color output reflected in the Tracking_Value property of the color object shall occur when the Color_Command property is written with a fade request that does not include a fade-time value. The range of allowable fade-time values is 100 ms to 86400000 ms (1 day) inclusive.

Values written outside of the allowable range shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.

12.X.11 Transition

This property, of type BACnetColorTransition, specifies how a change in the Present_Value transitions from the current color to the target color. A transition comes into effect when the Present_Value is directly commanded. Writing the color command FADE_TO_COLOR shall ignore the Transition property.

The transition may be NONE or FADE. The transition NONE causes the Present_Value to immediately be set to the target color when Present_Value is written. The FADE transition allows a smooth transition of the color when the Present_Value changes. A FADE transition executes a fade operation from the Tracking_Value to the target color using the fade time specified in Default_Fade_Time.

When a transition results in an operation that may cause the Tracking_Value to differ from the Present_Value, then the In_Progress property shall be set to the value that reflects the operation in progress.

If the Transition property is not present, then Present_Value shall behave as if Transition is NONE.

12.X.12 Value_Source

This property, of type BACnetValueSource, indicates the source of the value of the Present_Value. The Value_Source property and its use in the value source mechanism are described in Clause 19.5.

12.X.13 Audit_Level

[Note to reviewer: see Addendum bi]

12.X.14 Auditable_Operations

[Note to reviewer: see Addendum bi]

12.X.15 Tags

This property, of type BACnetARRAY of BACnetNameValue, is a collection of tags for the object. See Clause Y.1.4 for restrictions on the string values used for the names of these tag and for a description of tagging and the mechanism by which tags are defined.

Each entry in the array is a BACnetNameValue construct which consists of the tag name and an optional value. If the tag is defined to be a "semantic tag" then it has no value, and the "value" field of the BACnetNameValue shall be absent.

While some tags may be known in advance when a device is manufactured, it is recommended that implementations consider that this kind of information might not be known until a device is deployed and to provide a means of configuration or writability of this property.

12.X.16 Property_List
This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the list.

12.X.17 Profile_Location

This property, of type CharacterString, is the URI of the location of an xdd file (See Clause X.2) containing the definition of the CSML type specified by the Profile_Name property and possible other information (See Annex X). The URI is restricted to using only the "http", "https", and "bacnet" URI schemes. See Clause Q.8 for the definition of the "bacnet" URI scheme.

If a Profile_Location value is not provided for a particular object, then the client shall use the Profile_Location of the Device object, if provided, to find the definition of the Profile_Name.

12.X.18 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness, a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the device within which the object resides. A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here. This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope of this standard.
135-2020ca-3. Add new Color Temperature object type

Rationale

The 135-2020 Lighting Output and Binary Lighting Output objects do not address the concept of color temperature in their object models. There are architectural and even commercial lighting applications, where color temperature is a useful and important concept.

These changes extend the BACnet object model to accommodate color temperature.

[Change 3.2]

correlated color temperature (CCT): A concept that is defined in ANSI/ANSLG C78.377-2015 to specify the color temperature along a white light curve through the CIE chromaticity space.

…

clamped: The act of limiting a value based on another parameter to a restricted range.

…

[Add 12.Y, Color Temperature Object Type]

12.Y **Color Temperature Object Type**

The Color Temperature object type defines a standardized object whose properties represent the externally visible characteristics of white light color temperature control of a color temperature output and includes dedicated functionality specific to lighting control of color temperature that would otherwise require explicit programming. The color temperature output is analog in nature.

The color temperature of the lighting output can be changed directly to an absolute color temperature by writing to the Present_Value. The color temperature may also be changed by writing to the Color_Command property. The color command provides additional color control functionality such as fading.

The concept of closest correlated color temperature (CCT) locus is defined in ANSI/ANSLG C78.377-2015 (see Figure 12-Y). This idea is based on a white light curve through the CIE chromaticity space. The standard defines eight rhomboid regions centered on the white light curve. However, the curve extends to infinity and to zero within the CIE chromaticity space.

The Color Temperature object supports a single color-temperature model based on temperatures as Kelvin.

Figure 12-Y: White Light Curve

Writes of Color Temperatures that are outside the range 1000 to 30000 Kelvin shall be considered “values out of range.” When fading/ramping from one color temperature to another the algorithm used to determine the intermediate colors shall be a local matter.
The object and its properties are summarized in Table 12-Y and described in detail in this subclause.

Table 12-Y. Properties of the Color Temperature Object

<table>
<thead>
<tr>
<th>Property Identifier</th>
<th>Property Datatype</th>
<th>Conformance Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object.Identifier</td>
<td>BACnetObjectIdentifier</td>
<td>R</td>
</tr>
<tr>
<td>Object_Name</td>
<td>CharacterString</td>
<td>R</td>
</tr>
<tr>
<td>Object_Type</td>
<td>BACnetObjectType</td>
<td>R</td>
</tr>
<tr>
<td>Present_Value</td>
<td>Unsigned</td>
<td>W</td>
</tr>
<tr>
<td>Tracking_Value</td>
<td>Unsigned</td>
<td>R</td>
</tr>
<tr>
<td>Color_Command</td>
<td>BACnetColorCommand</td>
<td>W</td>
</tr>
<tr>
<td>In_Progress</td>
<td>BACnetColorOperationInProgress</td>
<td>R</td>
</tr>
<tr>
<td>Default_Color_Temperature</td>
<td>Unsigned</td>
<td>R</td>
</tr>
<tr>
<td>Description</td>
<td>CharacterString</td>
<td>O</td>
</tr>
<tr>
<td>Default_Fade_Time</td>
<td>Unsigned</td>
<td>R</td>
</tr>
<tr>
<td>Default_Ramp_Rate</td>
<td>Unsigned</td>
<td>R</td>
</tr>
<tr>
<td>Default_Step_Increment</td>
<td>Unsigned</td>
<td>R</td>
</tr>
<tr>
<td>Min_Pres_Value</td>
<td>Unsigned</td>
<td>O(^1)</td>
</tr>
<tr>
<td>Max_Pres_Value</td>
<td>Unsigned</td>
<td>O(^1)</td>
</tr>
<tr>
<td>Transition</td>
<td>BACnetColorTransition</td>
<td>O</td>
</tr>
<tr>
<td>Value_Source</td>
<td>BACnetValueSource</td>
<td>O(^2,3,4)</td>
</tr>
<tr>
<td>Audit_Level</td>
<td>BACnetAuditLevel</td>
<td>O(^5)</td>
</tr>
<tr>
<td>Auditable_Operations</td>
<td>BACnetAuditOperationFlags</td>
<td>O(^5)</td>
</tr>
<tr>
<td>Tags</td>
<td>BACnetARRAY[N] of BACnetNameValue</td>
<td>O</td>
</tr>
<tr>
<td>Property_List</td>
<td>BACnetARRAY[N] of BACnetPropertyIdentifier</td>
<td>R</td>
</tr>
<tr>
<td>Profile_Location</td>
<td>CharacterString</td>
<td>O</td>
</tr>
<tr>
<td>Profile_Name</td>
<td>CharacterString</td>
<td>O</td>
</tr>
</tbody>
</table>

\(^1\) If either of these properties are present then both shall be present
\(^2\) This property is required if the object supports the value source mechanism.
\(^3\) This property shall be present only if the object supports the value source mechanism.
\(^4\) This property shall be writable as described in Clause 19.5.
\(^5\) This property shall be present only if the device supports audit reporting.

12.Y.1 Object.Identifier

This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within the BACnet Device that maintains it.

12.Y.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be restricted to printable characters.

12.Y.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property shall be COLOR_TEMPERATURE.

12.Y.4 Present_Value

This property, of type Unsigned, shall indicate the target Color Temperature in Kelvin for the color temperature output. The range of values shall be 1000 to 30000 Kelvin. When writing to Present_Value, the algorithm used to determine the closest supported color temperature shall be a local matter.
Present_Value may also be affected by writes to the Color_Command property that initiate color commands. These commands may asynchronously affect the color temperature output by establishing a new target for Present_Value and carrying out the requested operation. Transitioning from one color temperature to another is supported by writing a FADE_TO_CCT, RAMP_TO_CCT, STEP_UP_CCT or STEP_DOWN_CCT command to the property Color_Command. The current color temperature is always indicated in the Tracking_Value property. If a color command is currently in progress and the Present_Value is written, the color command shall be halted (see Clause 12.Y.6.1 Halting a Color Command in Progress).

The color temperature output shall be updated whenever the Present_Value is written or changed as a result of executing a color command.

On a device restart, if Default_Color_Temperature property is non-zero, the color temperature output shall be updated to the value of the Default_Color_Temperature. If the Default_Color_Temperature property is zero, the color temperature output shall be updated to the last value of the Present_Value property if this value is preserved. If the Default_Color_Temperature property is zero and the value of the Present_Value property not preserved over a restart, the property In_Progress shall be set to NOT_CONTROLLED until the color temperature output is updated with the current value of Present_Value.

If the Min_Pres_Value and Max_Pres_Value properties are present then writes to Present_Value shall be further restricted to the range Min_Pres_Value through Max_Pres_Value. Values greater than 1000 and less than Min_Pres_Value shall be clamped to Min_Pres_Value. Values greater than Max_Pres_Value and less than 30000 shall be clamped to Max_Pres_Value.

If the Min_Pres_Value and Max_Pres_Value properties are not present then writes to Present_Value outside of the valid range of values shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.

12.Y.5 Tracking_Value

This property, of type Unsigned, indicates the device’s actual light output color temperature in Kelvin. If the Color_Command is written with a color operation that affects color temperature, causing Present_Value to be changed over time, or Present_Value is written-to directly, then Tracking_Value shall indicate the calculated color temperature for the color temperature output from moment to moment while the fade is in progress.

When the value of In_Progress is IDLE, Tracking_Value shall be equal to Present_Value.

When the value of In_Progress is FADE_ACTIVE or RAMP_ACTIVE, Tracking_Value shall indicate the current calculated value of the fade/ramp algorithm. The manner by which the Tracking_Value is calculated in this situation shall be a local matter.

When the value of In_Progress is NOT_CONTROLLED or OTHER, the value of Tracking_Value shall be a local matter.

12.Y.6 Color_Command

This property, of type BACnetColorCommand, is used to request color commands with specific behaviors. Color_Command is written with compound values that specify particular color operations. Devices containing Color_Temperature objects shall support all BACnetColorOperations shown in Table 12-Y2. If Color_Command is written with an enumeration value not shown in Table 12-Y2 a Result(-) shall be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE. If Color_Command is written with the value FADE_TO_COLOR a Result(-) shall be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE. The 'target-color-temperature' field, of type Unsigned, represents the target color temperature in Kelvin for FADE_TO_CCT and RAMP_TO_CCT operations in Color_Temperature objects. The 'fade-time' field is an optional amount of time during which the fade operation occurs for FADE_TO_CCT operations. The 'ramp-rate' field is an optional rate of change per second during ramp operation for RAMP_TO_CCT operations. The 'step-increment' field is an optional amount that Present_Value is incremented or decremented for each STEP_UP_CCT or STEP_DOWN_CCT operation. If a BACnetColorCommand is sent that includes an optional field that is not explicitly described for that operation in Table 12-Y2, then the field value shall be ignored. Color commands written with a required or optional field, explicitly specified for this command, which are outside of the allowable range of values, shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.
The color commands are described in Table 12-Y2. The notation to specify the syntax of the color commands is as follows:

- `<field in angle brackets>`: required field of the BACnetColorCommand
- `<field in angle brackets = value>`: required field of the BACnetColorCommand with a specified value

Table 12-Y2. Color Commands Applicable to Color Temperature Objects

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>This operation is used to indicate that no color command has been written to the Color_Command property. Attempts to write this operation to the Color_Command property shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.</td>
</tr>
<tr>
<td>FADE_TO_COLOR</td>
<td>This operation shall not be written to the Color_Command property. Attempts to write this operation to the Color_Command property shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.</td>
</tr>
<tr>
<td>FADE_TO_CCT</td>
<td>Commands Present_Value to fade from the current Tracking_Value to the target-color-temperature specified in the command. The fade operation changes the output color temperature from its current value to target-color-temperature, over a period of time defined by fade-time. While the fade operation is executing, In_Progress shall be set to FADE_ACTIVE, and Tracking_Value shall be updated to reflect the current progress of the fade. <code><target-color-temperature></code> shall be clamped to Min_Pres_Value and Max_Pres_Value as described in 12.Y.4. syntax: <code><operation = FADE_TO_CCT> <target-color-temperature> [fade-time]</code></td>
</tr>
<tr>
<td>RAMP_TO_CCT</td>
<td>Commands Present_Value to ramp from the current Tracking_Value to the target-color-temperature specified in the command. The ramp operation changes the output color temperature from its current value to target-color-temperature, at a particular Kelvin per second defined by ramp-rate. While the ramp operation is executing, In_Progress shall be set to RAMP_ACTIVE, and Tracking_Value shall be updated to reflect the current progress of the fade. <code><target-color-temperature></code> shall be clamped to Min_Pres_Value and Max_Pres_Value as described in 12.Y.4. syntax: <code><operation = RAMP_TO_CCT> <target-color-temperature> [ramp-rate]</code></td>
</tr>
<tr>
<td>STEP_UP_CCT</td>
<td>Commands Present_Value to a value equal to the Tracking_Value plus the step-increment. The resulting sum shall be clamped to Min_Pres_Value and Max_Pres_Value as described in 12.Y.4. syntax: <code><operation = STEP_UP_CCT> [step-increment]</code></td>
</tr>
<tr>
<td>STEP_DOWN_CCT</td>
<td>Commands Present_Value to a value equal to the Tracking_Value minus the step-increment. The resulting difference shall be clamped to Min_Pres_Value and Max_Pres_Value as described in 12.Y.4. syntax: <code><operation = STEP_DOWN_CCT> [step-increment]</code></td>
</tr>
<tr>
<td>STOP</td>
<td>Stops any FADE_TO_CCT or RAMP_TO_CCT command in progress and sets In_Progress to IDLE. If there is no fade command currently executing then this operation is ignored. syntax: <code><operation = STOP></code></td>
</tr>
</tbody>
</table>

12.Y.6.1 Halting a Color Command in Progress

Some color commands (e.g. FADE_TO_CCT) are executed over a period of time. While a color command is in progress, it shall be halted under the following conditions:

(a) A STOP or FADE_TO_CCT or RAMP_TO_CCT or STEP_UP_CCT or STEP_DOWN_CCT, is written to the Color_Command property, or
(b) The Present_Value is written.

When a FADE_TO_CCT or RAMP_TO_CCT or STEP_UP_CCT or STEP_DOWN_CCT command that is currently in progress is halted, the internal fade/ramp algorithm is halted.

12.Y.7 In_Progress

This property, of type BACneColorOperationInProgress, shall indicate that there may be processes in the Color Temperature object that may cause the Tracking_Value and Present_Value to differ temporarily. The processes indicated in the property are summarized in Table 12-Y3.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE</td>
<td>The default value that indicates that no processes are executing which would cause the Present_Value and Tracking_Value to differ.</td>
</tr>
<tr>
<td>FADE_ACTIVE</td>
<td>Indicates that a fade-to-cct command is currently being executed.</td>
</tr>
<tr>
<td>RAMP_ACTIVE</td>
<td>Indicates that a ramp-to-cct command is currently being executed.</td>
</tr>
<tr>
<td>NOT_CONTROLLED</td>
<td>Indicates that on startup or reset the color temperature output has not been updated with the current value of Present_Value.</td>
</tr>
<tr>
<td>OTHER</td>
<td>Indicates that the Tracking_Value and Present_Value may differ but none of the other conditions describe the nature of the process.</td>
</tr>
</tbody>
</table>

12.Y.8 Default_Color_Temperature

This property, of type Unsigned, indicates the color temperature in Kelvin to be used for the color temperature output on a device restart.

Writes to Default_Color_Temperature shall be clamped to Min_Pres_Value and Max_Pres_Value as described in 12.Y.4.

12.Y.9 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

12.Y.10 Default_Fade_Time

This property, of type Unsigned, indicates the amount of time in milliseconds over which changes to the Color Temperature reflected in the Tracking_Value property shall occur when the Color_Command property is written with a fade request that does not include a fade-time value. The range of allowable fade-time values is 100 ms to 86400000 ms (1 day) inclusive.

Values written outside of the allowable range shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.

12.Y.11 Default_Ramp_Rate

This property, of type Unsigned, indicates the rate of change, in Kelvin per second, to the Color Temperature reflected in the Tracking_Value property that shall occur when the Color_Command property is written with a ramp request that does not include a ramp-rate value. The range of allowable ramp-rate values is 1 to 30000 inclusive.

Values written outside of the allowable range shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.

12.Y.12 Default_Step_Increment

This property, of type Unsigned, indicates the amount of change in Kelvin to the Color Temperature reflected in the Tracking_Value property that shall occur when the Color_Command property is written with a step-up or step-down request that does not include a step-increment value. The range of allowable step-Increment values is 1 to 30000 inclusive.
Values written outside of the allowable range shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.

12.Y.13 Min_Pres_Value

This property, of type Unsigned, specifies the minimum value allowed for Present_Value. Writes to Present_Value shall be clamped to the range Min_Pres_Value to Max_Pres_Value. See 12.Y.4. Min_Pres_Value shall be greater than or equal to 1000.

12.Y.14 Max_Pres_Value

This property, of type Unsigned, specifies the maximum value allowed for Present_Value. Writes to Present_Value shall be clamped to the range Min_Pres_Value to Max_Pres_Value. See 12.Y.4. Max_Pres_Value shall be less than or equal to 30000.

12.Y.15 Transition

This property, of type BACnetColorTransition, specifies how a change in the Present_Value transitions from the current level to the target level. A transition comes into effect when the Present_Value is directly commanded. Writing the Color command FADE_TO_CCT, RAMP_TO_CCT, STEP_UP_CCT or STEP_DOWN_CCT shall ignore the Transition property.

The transition may be NONE or FADE or RAMP. The transition NONE causes the Present_Value to immediately be set to the target level when Present_Value is written. The FADE transition allows a smooth transition of the color temperature when the Present_Value changes. A FADE transition executes a fade operation from the Tracking_Value to the target level using the fade time specified in Default_Fade_Time. The RAMP transition also allows a smooth transition of the color temperature when the Present_Value changes. A RAMP transition executes a ramp operation from the Tracking_Value to the target level using the ramp-rate specified in Default_Ramp_Rate.

When a transition results in an operation that may cause the Tracking_Value to differ from the Present_Value, then the In_Progress property shall be set to the value that reflects the operation in progress.

If the Transition property is not present, then Present_Value shall behave as if Transition is NONE.

12.Y.16 Value_Source

This property, of type BACnetValueSource, indicates the source of the value of the Present_Value. The Value_Source property and its use in the value source mechanism are described in Clause 19.5.

12.Y.17 Audit_Level

[Note to reviewer: see Addendum bi]

12.Y.18 Auditable_Operations

[Note to reviewer: see Addendum bi]

12.Y.19 Tags

This property, of type BACnetARRAY of BACnetNameValue, is a collection of tags for the object. See Clause Y.1.4 for restrictions on the string values used for the names of these tag and for a description of tagging and the mechanism by which tags are defined.

Each entry in the array is a BACnetNameValue construct which consists of the tag name and an optional value. If the tag is defined to be a "semantic tag" then it has no value, and the "value" field of the BACnetNameValue shall be absent.

While some tags may be known in advance when a device is manufactured, it is recommended that implementations consider that this kind of information might not be known until a device is deployed and to provide a means of configuration or writability of this property.

12.Y.20 Property_List
This read-only property is a BACnetARRAY of property identifiers, one property identifier for each property that exists within the object. The Object_Name, Object_Type, Object_Identifier, and Property_List properties are not included in the list.

12.Y.21 Profile_Location

This property, of type CharacterString, is the URI of the location of an xdd file (See Clause X.2) containing the definition of the CSML type specified by the Profile_Name property and possible other information (See Annex X). The URI is restricted to using only the "http", "https", and "bacnet" URI schemes. See Clause Q.8 for the definition of the "bacnet" URI scheme.

If a Profile_Location value is not provided for a particular object, then the client shall use the Profile_Location of the Device object, if provided, to find the definition of the Profile_Name.

12.Y.22 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness, a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the device within which the object resides. A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here. This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope of this standard.
135-2020ca-4. Add color-reference properties to LO and BLO object types

Rationale

The 135-2020 Lighting Output (LO) and Binary Lighting Output (BLO) objects only affect luminance of lighting output. The newly proposed Color (135-2020ca-2) and Color Temperature (135-2020ca-3) objects provide control of color and color temperature. When a lighting output device needs to control both luminance and color or color temperature, there is no obvious connection between the LO or BLO object and its color-describing companion object. Further, there are use cases for color and color temperature control that require explicit override of color temporarily.

These changes introduce new properties to LO and BLO objects that expose those relationships.

[Change 12.54, Lighting Output Object Type]

... **Figure 12-14. Daily Schedule with Blink-Warn Example**

In some cases, lighting outputs may also need to control color or color temperature of the physical device that the output represents. In those instances, the color characteristics of the physical output are controlled by companion Color or Color Temperature objects. The Color_Reference property defines the companion Color or Color Temperature object. Multiple Lighting Output objects may reference the same Color or Color Temperature object when required.

When there are companion color objects, they operate asynchronously with respect to the Lighting Output object. That can create circumstances that need special handling. For example, a physical output is producing a dim light of a specific color. During an emergency or maintenance situation that output might need to be changed to a bright white light instead and then after the situation is resolved, the output should return to its previous state. However, when there is a companion color object that is asynchronously performing a transition such as a FADE operation, upon restoration the color should return to the then-current color, not the color that existed at the start of the emergency. The Override_Color_Reference property defines a Color or Color Temperature object to be used as the color during an override situation.

The object and its properties are summarized in Table 12-64 and described in detail in this clause.

[Add to Table 12-64]

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command_Time_Array</td>
<td>BACnetARRAY[16] of BACnetTimeStamp</td>
<td>O⁷</td>
</tr>
<tr>
<td>Color_Reference</td>
<td>BACnetObjectIdentifier</td>
<td>O¹²</td>
</tr>
<tr>
<td>Color_Override</td>
<td>Boolean</td>
<td>O¹³</td>
</tr>
<tr>
<td>Override_Color_Reference</td>
<td>BACnetObjectIdentifier</td>
<td>O¹³</td>
</tr>
<tr>
<td>Tags</td>
<td>BACnetARRAY[N] of BACnetNameValue</td>
<td>O</td>
</tr>
<tr>
<td>Profile_Location</td>
<td>CharacterString</td>
<td>O</td>
</tr>
<tr>
<td>Profile_Name</td>
<td>CharacterString</td>
<td>O</td>
</tr>
</tbody>
</table>

8 This property shall be writable as described in Clause Error! Reference source not found..
12 This property is required if the object supports color or color override
13 This property is required if, and shall be present only if, the object supports color override

12.54.X Color_Reference

This property, of type BACnetObjectIdentifier, when present, shall specify the object identifier of a Color or Color Temperature object within the same device that controls the color aspects of this Lighting Output. If the object instance portion of the object identifier has the value 4194303, then there is no color companion object associated with this output. In that case the applicable color or color temperature shall be a local matter.

12.54.Y Color_Override

This property, of type Boolean, when present, shall specify whether the currently active color or color temperature comes from the Color_Reference (FALSE) or Override_Color_Reference (TRUE). If Color_Override is present it shall be writable.

12.54.Z Override_Color_Reference

This property, of type BACnetObjectIdentifier, when present, shall specify the object identifier of a Color or Color Temperature object within the same device that controls the color override aspects of this Lighting Output. Color override occurs when the Color_Override property of the Lighting Output is written with TRUE. In this case the Override_Color_Reference points to an object whose color shall be used to control the actual color of the lighting output. While color- overridden, any fade that may be in progress for the lighting output, as well as any fade that may be in progress for the Color_Reference object, shall continue without interruption, except that the actual color output shall use the override color instead. See Clause 12.54 for a description of color override. Color override shall cease when Color_Override is written with FALSE.

If the object instance portion of the object identifier has the value 4194303, then there is no color companion override object associated with this output. In that case the applicable color or color temperature shall be a local matter.
[Change 12.55, Binary Lighting Output Object Type]

In some cases, binary lighting outputs may also need to control color or color temperature of the physical device that the output represents. In those instances, the color characteristics of the physical output are controlled by companion Color or Color Temperature objects. The Color_Reference property defines the companion Color or Color Temperature object. Multiple Binary Lighting Output objects may reference the same Color or Color Temperature object when required.

When there are companion color objects, they operate asynchronously with respect to the Binary Lighting Output object. That can create circumstances that need special handling. For example, a physical output is producing a light of a specific color. During an emergency or maintenance situation that output might need to be changed to a bright white light instead and then after the situation is resolved, the output should return to its previous state. However, when there is a companion color object that is asynchronously performing a transition such as a FADE operation, upon restoration the color should return to the then-current color, not the color that existed at the start of the emergency. The Override_Color_Reference property defines a Color or Color Temperature object to be used as the color during an override situation.

The object and its properties are summarized in Table 12-69 and described in detail in this clause.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command_Time_Array</td>
<td>BACnetARRAY[16] of BACnetTimeStamp</td>
<td>O7</td>
</tr>
<tr>
<td>Color_Reference</td>
<td>BACnetObjectIdentifier</td>
<td>O12</td>
</tr>
<tr>
<td>Color_Override</td>
<td>Boolean</td>
<td>O13</td>
</tr>
<tr>
<td>Override_Color_Reference</td>
<td>BACnetObjectIdentifier</td>
<td>O13</td>
</tr>
<tr>
<td>Tags</td>
<td>BACnetARRAY[N] of BACnetNameValue</td>
<td>O</td>
</tr>
<tr>
<td>Profile_Location</td>
<td>CharacterString</td>
<td>O</td>
</tr>
<tr>
<td>Profile_Name</td>
<td>CharacterString</td>
<td>O</td>
</tr>
</tbody>
</table>

8 This property shall be writable as described in Clause Error! Reference source not found..
12 This property is required if the object supports color or color override
13 This property is required if, and shall be present only if, the object supports color override

12.55.X Color_Reference

This property, of type BACnetObjectIdentifier, when present, shall specify the object identifier of a Color or Color Temperature object within the same device that controls the color aspects of this Binary Lighting Output. If the object instance portion of the object identifier has the value 4194303, then there is no color companion object associated with this output. In that case the applicable color or color temperature shall be a local matter.

12.55.Y Color_Override

This property, of type Boolean, when present, shall specify whether the currently active color or color temperature comes from the Color_Reference (FALSE) or Override<Color.Reference> (TRUE). If Color_Override is present it shall be writable.

12.55.Z Override_Color_Reference

This property, of type BACnetObjectIdentifier, when present, shall specify the object identifier of a Color or Color Temperature object within the same device that controls the color override aspects of this Binary Lighting Output. Color override occurs when the Color_OVERRIDE property of the Binary Lighting Output is written with TRUE. In this case the Override_Color_Reference points to an object whose color shall be used to control the actual color of the lighting output. While color overridden, any fade that may be in progress for the Color_Reference object, shall continue without interruption, except that the actual color output shall use the override color instead. See Clause 12.55 for a description of color override. Color override shall cease when Color_Override is written with FALSE.

If the object instance portion of the object identifier has the value 4194303, then there is no color companion override object associated with this output. In that case the applicable color or color temperature shall be a local matter.
135-2020ca-5. Add high/low trim to LO object type

[change Clause 12.54, p. 495]

12.54 Lighting Output Object Type

... The physical output level, or non-normalized range, is specified as the linearized percentage (0..100%) of the possible light output range with 0.0% being off, 1.0% being dimmest, and 100.0% being brightest. The actual range represents the subset of physical output levels defined by Min_Actual_Value and Max_Actual_Value (or 1.0 to 100.0% if these properties are not present). The normalized range is always 0.0 to 100.0% where 1.0% = bottom of the actual range and 100.0% = top of the actual range. All 0.0% to 100.0% properties of the Lighting Output object shall use the normalized range except for Min_Actual_Value and Max_Actual_Value. If Min_Actual_Value and Max_Actual_Value are not present, then the normalized and non-normalized ranges shall be the same.

The Operating Range is a subset of the Normalized Range, that represents the range of acceptable values for control of the object. The Operating Range is defined by the High_End_Trim and Low_End_Trim property values. When values are written outside of the Operating Range, the Tracking_Value will reflect the actual, clamped normalized light output while the Present_Value will reflect the original target value.

![Diagram of Normalized and Operating Ranges](image)

Figure 12-13. Normalized Range and Operating Range of the Lighting Output

... The object and its properties are summarized in Table 12-64 and described in detail in this clause.

<table>
<thead>
<tr>
<th>Property Identifier</th>
<th>Property Datatype</th>
<th>Conformance Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Profile_Name</td>
<td>CharacterString</td>
<td>O</td>
</tr>
<tr>
<td>High_End_Trim</td>
<td>REAL</td>
<td>O</td>
</tr>
<tr>
<td>Low_End_Trim</td>
<td>REAL</td>
<td>O</td>
</tr>
<tr>
<td>Trim_Fade_Time</td>
<td>Unsigned</td>
<td>O^4</td>
</tr>
</tbody>
</table>

^4 This property is required if and only if either the High_End_Trim or Low_End_Trim properties are present.
12.54.5 Tracking_Value

This property, of type REAL, indicates the value at which the physical lighting output is being controlled within the normalized range at all times. If the High_End_Trim or Low_End_Trim properties are present, the Tracking_Value shall be clamped inclusively within the Operating Range.

When the value of In_Progress is IDLE, Tracking_Value shall be equal to Present_Value.

When the value of In_Progress is RAMP_ACTIVE or FADE_ACTIVE, Tracking_Value shall indicate the current calculated value of the ramp or fade algorithm. The manner by which the Tracking_Value is calculated in this situation shall be a local matter.

When the value of In_Progress is TRIM_ACTIVE, Tracking_Value shall indicate the clamped value is equal to either the High_End_Trim or Low_End_Trim properties.

When the value of In_Progress is NOT_CONTROLLED or OTHER, the value of Tracking_Value shall be a local matter.

12.54.7 In_Progress

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE</td>
<td>The default value that indicates that no processes are executing condition is in effect, which would cause the Present_Value and Tracking_Value to differ.</td>
</tr>
<tr>
<td>RAMP_ACTIVE</td>
<td>Indicates that a ramp lighting command is currently being executed.</td>
</tr>
<tr>
<td>FADE_ACTIVE</td>
<td>Indicates that a fade lighting command is currently being executed.</td>
</tr>
<tr>
<td>TRIM_ACTIVE</td>
<td>Indicates that the Present_Value is currently outside of the Operating Range (lower than Low_End_Trim or higher than High_End_Trim) regardless of ramp or fade status, which would cause the Present_Value and Tracking_Value to differ.</td>
</tr>
<tr>
<td>NOT_CONTROLLED</td>
<td>Indicates that on startup or reset the physical output has not been updated with the current value of Present_Value.</td>
</tr>
<tr>
<td>OTHER</td>
<td>Indicates that the Tracking_Value and Present_Value may differ but none of the other conditions describe the nature of the process.</td>
</tr>
</tbody>
</table>

12.54.Y1 High_End_Trim

This property, of type REAL, specifies a physical lighting output value within the normalized range that acts as an upper-end limit for the Tracking_Value. If the Present_Value is written with a value above the High_End_Trim, the Tracking_Value shall be clamped to High_End_Trim and the property In_progress shall be set to Trim_Active. If the High_End_Trim value is less than the Low_End_Trim value, the Reliability property shall indicate CONFIGURATION_ERROR.

High_End_Trim shall always be a positive number in the normalized range 1.0% to 100.0%. This property does not change the normalized range.

When High_End_Trim is being used and the value of the In_Progress property is TRIM_ACTIVE, the method for adjusting the calculation of fade-time shall be a local matter.

If Present_Value is commanded at priority 1 or 2, High_End_Trim shall not be applied and the Tracking_Value shall not be clamped.

12.54.Y2 Low_End_Trim

This property, of type REAL, specifies a physical lighting output value within the normalized range that acts as a lower-end limit for the Tracking_Value. If the Present_Value is written with a value above 0.0% but below the Low_End_Trim, the
Tracking Value shall be clamped to Low_End_Trim and the property In_progress shall be set to Trim_Active. If the High_End_Trim value is less than the Low_End_Trim value, the Reliability property shall indicate CONFIGURATION_ERROR.

Low_End_Trim shall always be a positive number in the normalized range 1.0% to 100.0%. This property does not change the normalized range.

When Low_End_Trim is being used and the value of the In_Progress property is TRIM_ACTIVE, the method for adjusting the calculation of fade-time shall be a local matter.

If Present_Value is commanded at priority 1 or 2, Low_End_Trim shall not be applied and the Tracking_Value shall not be clamped.

12.54.Y3 Trim_Fade_Time

This property, of type Unsigned, indicates the amount of time in milliseconds over which changes to the normalized value reflected in the Tracking_Value property of the lighting output shall occur when the High_End_Trim or Low_End_Trim properties are changed such that the current value of the Present_Value property falls outside of the Operating Range. The range of allowable fade-time values is 0 ms to 86400000 ms (1 day) inclusive.

Values written outside of the allowable range shall cause a Result(-) to be returned with an Error Class of PROPERTY and an Error Code of VALUE_OUT_OF_RANGE.
135-2020ca-6. Aggregated changes to Clause 21 and 25

[Clause 21 changes]

BACnetChannelValue ::= CHOICE {
 null NULL,
 real REAL,
 enumerated ENUMERATED,
 unsigned Unsigned,
 boolean BOOLEAN,
 integer INTEGER,
 double Double,
 time Time,
 characterstring CharacterString,
 octetstring OCTET STRING,
 bitstring BIT STRING,
 date Date,
 objectidentifier BACnetObjectIdentifier,
 lighting-command [0] BACnetLightingCommand,
 xycolor [1] BACnetxyColor
 color-command [2] BACnetColorCommand
}

BACnetColorCommand ::= SEQUENCE {
 operation [0] BACnetColorOperation,
 target-color [1] BACnetxyColor OPTIONAL,
 target-color-temperature [2] Unsigned OPTIONAL,
 fade-time [3] Unsigned (100.. 86400000) OPTIONAL,
 ramp-rate [4] Unsigned (1..30000) OPTIONAL,
 step-increment [5] Unsigned (1..30000) OPTIONAL
}

BACnetColorOperationInProgress ::= ENUMERATED {
 idle (0),
 fade-active (1),
 ramp-active (2),
 not-controlled (3),
 other (4)
}

BACnetColorTransition ::= ENUMERATED {
 none (0),
 fade (1),
 ramp (2)
}

BACnetxyColor ::= SEQUENCE {
 x-coordinate REAL, --(0.0 to 1.0)
 y-coordinate REAL --(0.0 to 1.0)
}

BACnetLightingInProgress ::= ENUMERATED {
 idle (0),
 fade-active (1),
 ramp-active (2),
 not-controlled (3),
 other (4)
}

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.
trim-active (5)

BACnetPriorityValue ::= CHOICE {
 null NULL,
 real REAL,
 enumerated ENUMERATED,
 unsigned Unsigned,
 boolean BOOLEAN,
 signed INTEGER,
 double Double,
 time Time,
 characterString CharacterString,
 octetString OCTET STRING,
 bitString BIT STRING,
 date Date,
 objectid BACnetObjectIdentifier,
 constructedValue [0] ABSTRACT-SYNTAX.&Type,
 datetime [1] BACnetDateTime,
 xycolor [2] BACnetxyColor
}

BACnetColorOperation ::= ENUMERATED {
 none (0),
 fade-to-color (1),
 fade-to-cct (2),
 ramp-to-cct (3),
 step-up-cct (4),
 step-down-cct (5),
 stop (6)
}

BACnetObjectType ::= ENUMERATED { -- see below for numerical order
 ...
 characterstring-value (40),
 color (63),
 color-temperature (64),
 command (7),
 ...
 -- numerical order reference
 ...
 -- see audit-reporter (62)
 -- see audit-reporter (62),
 -- color (63),
 -- color-temperature (64)
 ...
}

BACnetObjectTypesSupported ::= BIT STRING {
 ...
 audit-reporter (62)
 audit-reporter (62),
 color (63),
 color-temperature (64)
}

[Insert into production BACnetPropertyIdentifier in Clause 21, p. 845]

BACnetPropertyIdentifier ::= ENUMERATED { -- see below for numerical order
 ...

client-cov-increment (127),
color-override (4194328),
color-reference (4194329),
default-color (4194330),
default-color-temperature (4194331),

override-color-reference (4194332)

-- numerical order reference

-- see represents (491),
-- see color-override (4194328),
-- see color-reference (4194329),
-- see default-color (4194330),
-- see default-color-temperature (4194331),
-- see override-color-reference (4194332)

[Add to Clause 25]

Table K-3. Presentation Requirements by Datatype

<table>
<thead>
<tr>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>Present NULL values. The format is unrestricted as long as NULL is distinguishable from other values.</td>
</tr>
<tr>
<td>BOOLEAN</td>
<td>Present all valid values. The format is unrestricted as long as each valid value is distinguishable.</td>
</tr>
<tr>
<td>Unsigned, Unsigned8, Unsigned16,</td>
<td>Present the complete value range, unless specifically restricted by the standard for the property being displayed. The minimum displayable range for Unsigned by DS-AV-A devices is the same as Unsigned32 with the exception of array indexes, which shall have a minimum displayable range of Unsigned16. In addition, any Unsigned property whose value is also used as an array index, such as a Multi-state object's Present_Value, shall have a minimum displayable range of Unsigned16.</td>
</tr>
<tr>
<td>Unsigned32</td>
<td></td>
</tr>
<tr>
<td>INTEGER</td>
<td>Present the complete value range, unless specifically restricted by the standard for the property being displayed. The minimum displayable range for INTEGER shall be (-2147483648...2147483647).</td>
</tr>
<tr>
<td>REAL, Double</td>
<td>Present the complete value range, including special values such as (+)INF and NaN, unless specifically restricted by the standard for the property being displayed.</td>
</tr>
<tr>
<td>OCTET STRING</td>
<td>Present octet strings up to a length of 8 octets. The actual presentation of the values is unrestricted (text, numeric, iconic, etc.), as long as the individual values are distinguishable.</td>
</tr>
<tr>
<td>Character String</td>
<td>Present strings up to the length specified in Table K-4, encoded in any of the character sets supported by the A device.</td>
</tr>
<tr>
<td>BIT STRING</td>
<td>Present the complete range of standard values defined for all standard bit string types for the Protocol_Revision claimed by the A device. (Note that in Protocol_Revision 24, BACnetObjectTypesSupported exceeded the historical minimum display requirement of 64 bits.) For properties where the length of the bit string is not directly defined by the standard (such as the Present_Value of the BitString Value object), present bit strings up to a length of 64 bits. The actual presentation of the values is unrestricted (text, numeric, iconic, etc.) as long as the individual values are distinguishable.</td>
</tr>
<tr>
<td>Enumerated</td>
<td>Present the standard values defined for all standard enumerated types for the Protocol_Revision claimed by the A device. The actual presentation of the values is unrestricted (text, numeric, iconic, etc.) as long as the individual values are distinguishable.</td>
</tr>
<tr>
<td>Date</td>
<td>Present all valid dates, including values that contain unspecified octets (X'FF') or special date values (such as 'even days') which are defined for the Protocol_Revision claimed by the A device. Where the month, day and year fields all contain singular specified values, the content of the DayOfWeek field may be ignored. The format is unrestricted as long as each valid value is uniquely presented.</td>
</tr>
<tr>
<td>Time</td>
<td>Present all valid times, including values that contain unspecified octets (X'FF'). The format is unrestricted as long as each valid value is uniquely presented.</td>
</tr>
<tr>
<td>BACnetObjectIdentifier</td>
<td>Present all valid values. The format is unrestricted as long as each valid value is distinguishable. It is acceptable that BACnetObjectIdentifier values be replaced with unique object identification values such as the object's name, where available.</td>
</tr>
</tbody>
</table>
[Add a new entry to **History of Revisions**, p. 1411]

HISTORY OF REVISIONS

		Addendum ca to ANSI/ASHRAE Standard 135-2020
1	24	Approved by ASHRAE on MONTH DAY, 20XX; and by the American National Standards Institute on MONTH DAY, 20XX.
		1. Add new Color object type.
		2. Add new Color Temperature object type.
		3. Add color-reference properties to LO and BLO object types.
		4. Add high/low trim to LO object type.
		5. BIBB Changes to Support Additional Object Types.

ASHRAE is concerned with the impact of its members’ activities on both the indoor and outdoor environment. ASHRAE’s members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted Standards and the practical state of the art.

ASHRAE’s short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the Standards and Guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive Technical Committee structure, continue to generate up-to-date Standards and Guidelines where appropriate and adopt, recommend, and promote those new and revised Standards developed by other responsible organizations.

Through its Handbook, appropriate chapters will contain up-to-date Standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating Standards and Guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system’s intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE’s primary concern for environmental impact will be at the site where equipment within ASHRAE’s scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.
About ASHRAE

Founded in 1894, ASHRAE is a global professional society committed to serve humanity by advancing the arts and sciences of heating, ventilation, air conditioning, refrigeration, and their allied fields.

As an industry leader in research, standards writing, publishing, certification, and continuing education, ASHRAE and its members are dedicated to promoting a healthy and sustainable built environment for all, through strategic partnerships with organizations in the HVAC&R community and across related industries.

To stay current with this and other ASHRAE Standards and Guidelines, visit www.ashrae.org/standards, and connect on LinkedIn, Facebook, Twitter, and YouTube.

Visit the ASHRAE Bookstore

ASHRAE offers its Standards and Guidelines in print, as immediately downloadable PDFs, and via ASHRAE Digital Collections, which provides online access with automatic updates as well as historical versions of publications. Selected Standards and Guidelines are also offered in redline versions that indicate the changes made between the active Standard or Guideline and its previous version. For more information, visit the Standards and Guidelines section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this Standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE Standards and Guidelines are no longer distributed with copies of the Standards and Guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form to promote more sustainable use of resources.